接口作用

MongoDB中,列的类型不同(Array类型,Object类型),在转换成为二维表的时候,就会有不同的处理方式。

从MongoDB数据集插件8.4+版本,提供接口可自行开发插件,处理更为复杂的类型的列。

接口内容

public interface ColumnResolver extends Mutable {

    String MARK_STRING = "ColumnResolver";

    int CURRENT_LEVEL = 1;


    boolean checkIfConditionMeet(ColumnResolver resolver);

    /**
     * 是否需要处理该类型的元素
     *
     * @param cell doc查询出来的对象
     * @return 需要做扩展处理则返回true,否则返回false
     */
    boolean accept(Object cell);

    /**
     * 增加新的列
     *
     * @param key  列名
     * @param cell 内容
     */
    List<FieldObject> expandColumn(String key, Object cell);


    /**
     * 扩展特殊列,增加新的行
     *
     * @param doc                 MongoDB的文档查询对象
     * @param columnNames         列名集合
     * @param columnResolverMap 需要特殊处理的列以及处理器集合
     * @param rowDataCollections  扩展出来的行数据集合
     * @param rowData             当前行数据
     */
    void expandData(Document doc, List<String> columnNames,
                    Map<FieldObject, ColumnResolver> columnResolverMap,
                    List<List<Object>> rowDataCollections,
                    List<Object> rowData);
}

示例实现(数组类型)

我们以数组元素为例子,面对这样的数据结构:

{ 
    "name" : "李四", 
    "age" : 15, 
    "language" : [
        "英语", 
        "数学", 
        "物理"
    ], 
    "region" : [
        "新疆", 
        "海南", 
        "台湾"
    ], 
    "country" : "US"
}

当需要把表格转换为二维表的时候,就需要处理language和region这样的数组元素,可以通过实现接口com.fr.plugin.db.mongo.expand.ColumnResolver,来把数组自动扩张开,示例代码如下:

public class ArrayColumnResolver extends AbstractColumnResolver {

    @Override
    public boolean accept(Object cell) {
        return cell instanceof ArrayList
                && !(((ArrayList) cell).get(0) instanceof Document);
    }


    @Override
    public List<FieldObject> expandColumn(String key, Object cell) {
        List<FieldObject> data = new ArrayList<FieldObject>();
         data.add(FieldObject.create(key));
         return data;
    }

    @Override
    public void expandData(Document doc, List<String> columnNames, Map<FieldObject, ColumnResolver> columnResolverMap, List<List<Object>> rowDataCollections, List<Object> rowData) {
        Map<Integer, List<Object>> group = new HashMap<Integer, List<Object>>();
        List<Object> standard = null;
        int maxLength = 0;
        for (Map.Entry<FieldObject, ColumnResolver> entry : columnResolverMap.entrySet()) {
            if (!checkIfConditionMeet(entry.getValue())) {
                continue;
            }
            FieldObject fieldObject = entry.getKey();
            Object data = doc.get(fieldObject.getOriginalName());
            if (data instanceof ArrayList) {
                List<Object> array = (List<Object>) data;
                if (standard == null) {
                    standard = array;
                }
                maxLength = Math.max(maxLength, array.size());
                group.put(fieldObject.getIndex(), array);
            }
        }

        if (standard != null) {
            for (int i = 0; i < maxLength; i++) {
                List<Object> row = new ArrayList<Object>(Arrays.asList(new Object[rowData.size()]));
                Collections.copy(row, rowData);
                for (FieldObject fieldObject : columnResolverMap.keySet()) {
                    List<Object> array = group.get(fieldObject.getIndex());
                    row.set(fieldObject.getIndex(), array.size() > i ? array.get(i) : null);
                }
                rowDataCollections.add(row);
            }
        }
    }
}

注册方式

<dependence>
    <Item key="com.fr.solution.plugin.db.mongo" type="plugin"/>
</dependence>
<extra-core>
    <ColumnResolver class="com.fr.plugin.db.mongo.expand.impl.ArrayColumnResolver"/>
</extra-core>

使用方式

同时安装MongoDB插件和列处理插件,就可以实现自已的要求了。